Dear students get fully solved
assignments
Send your semester &
Specialization name to our mail id :
help.mbaassignments@gmail.com
or
call us at : 08263069601
DRIVE
Fall 2017
PROGRAM
Bachelor of Computer Application - BCA
SEMESTER
I
SUBJECT
CODE & NAME BCA113 – Basic Mathematics
Assignment
Set -1
1 If tan A = 1- cos B . show that
tan 2A = tan B.
sinB
Answer: Given that tan A = 1-cosB
SinB
i.e tan
A = 1-{1-2sin^2 (B/2)}
2 a) If in group G, (ab)^2 = a^2b^2 for
every a, b Î G prove that G is abelian.
b) Show that if every element of a group G
is its own inverse then G is abelian.
Answer: a) (ab)^2 = a^2.b^2
Ø
(ab)
(ab) = (a . a) (b . b)
Ø
A
3 Evaluate dy/dx, when y = log[√(1+x^2)+x]) / [√(1+x^2)-x])
Answer: d/dx{(log[√(1+x^2)+x]) - log[√(1+x^2)-x])
(Since
log A/B = Log A – log B)
=
Assignment
Set -2
1 Integrate the following w.r.t. x
i) x √(x + a)
ii) x /√(a + bx)
Answer: a) x √(x + a)
∫x√(x+
2 Solve: 3/1 + (3.5/1.2) . (1/3) +
(3.5.7/1.2.3) . (1/3^2) + …………..∞]
Answer: Comparing the given series with one of the general Binomial
series, we get
P=3,
q=2, x/q=1/3
x=2/
3 If a = cos q
+ i sin q, 0<q <2p
prove that {1+a}/{1-a} = i cot q/2
Answer: i. If a = cos q
+ i sin q,0 <q <
2p prove that 1+a/1-a = i cot q/2
L.H.S = 1+
cos q + i sin q
1 - cos q -
i sin q
= 2 cos^2 q/2 + 2 i sin q/2 cos
q/2
2
sin
Dear students get fully solved
assignments
Send your semester &
Specialization name to our mail id :
help.mbaassignments@gmail.com
or
call us at : 08263069601
No comments:
Post a Comment
Note: only a member of this blog may post a comment.