BCA113 – Basic Mathematics


Dear students get fully solved assignments
Send your semester & Specialization name to our mail id :
help.mbaassignments@gmail.com
or
call us at : 08263069601

DRIVE Fall 2017
PROGRAM Bachelor of Computer Application - BCA
SEMESTER I
SUBJECT CODE & NAME BCA113 – Basic Mathematics


Assignment Set -1

1 If tan A = 1- cos B . show that tan 2A = tan B.
                          sinB

Answer: Given that tan A = 1-cosB
                                                          SinB

i.e tan A = 1-{1-2sin^2 (B/2)}
             

2 a) If in group G, (ab)^2 = a^2b^2 for every a, b Î G prove that G is abelian.
b) Show that if every element of a group G is its own inverse then G is abelian.

Answer: a) (ab)^2 = a^2.b^2

Ø  (ab) (ab) = (a . a) (b . b)

Ø  A


3 Evaluate dy/dx,  when y = log[√(1+x^2)+x]) / [√(1+x^2)-x])

Answer: d/dx{(log[√(1+x^2)+x]) - log[√(1+x^2)-x])

(Since log A/B = Log A – log B)

=            


Assignment Set -2

1 Integrate the following w.r.t. x
i) x √(x + a)
ii) x /√(a + bx)

Answer: a) x √(x + a)

∫x√(x+


2 Solve: 3/1 + (3.5/1.2) . (1/3) + (3.5.7/1.2.3) . (1/3^2) + …………..∞]

Answer: Comparing the given series with one of the general Binomial series, we get

P=3, q=2, x/q=1/3

x=2/


3 If a = cos q + i sin q, 0<q <2p prove that {1+a}/{1-a} = i cot q/2

Answer: i. If a = cos q + i sin q,0 <q < 2p prove that 1+a/1-a = i cot q/2

L.H.S = 1+ cos q + i sin q
              1 - cos q - i sin q

= 2 cos^2 q/2 + 2 i sin q/2 cos q/2
   2 sin


Dear students get fully solved assignments
Send your semester & Specialization name to our mail id :
help.mbaassignments@gmail.com
or
call us at : 08263069601



No comments:

Post a Comment

Note: only a member of this blog may post a comment.